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The contribution of the shape factorσ(r ) to the electronegativity is established. This shape factor, measuring
the shape of the electron densityF(r ), is defined asσ(r ) ) F(r )/N and integrates to unity:∫σ(r ) dr ) 1. A
new response function is thereby introduced, giving the change of the energy of an atomic or molecular
system with respect to the shape factorσ(r ). Finally, a physical interpretation is given for this response
function.

1. Introduction

In density-functional theory,1 the electronic chemical potential
µ of an atomic or molecular system is defined as the derivative
of the energyE with respect to the number of electronsN at a
constant external potentialV(r ) (i.e., the potential due to the
nuclei in the system):

Following Iczkowski and Margrave,2 Parr and co-workers
identified this chemical potential with the negative of the
electronegativityø (i.e.,µ ) -ø).3 In practice, this derivative
1 is calculated using a finite difference approximation with∆N
) (1:4

Using this approximation in combination with a quadratic
relationship for theE ) E[N] curve, one finds the well-known
Mulliken expression5 for the electronegativity:

with I and A the ionization energy and electron affinity,
respectively. It can thus be seen that an evaluation ofø requires
the knowledge of the system’s energy response to a change in
number of electrons. Due to the Hohenberg and Kohn theorms,6

the number of electronsN exactly determines the electron
density at constant external potential. This electron densityF(r )
can be written as the product of this number of electronsN and
a shape factorσ(r ):1,7

From this expression, it can be seen that the number of electrons
determines the size or extent of the electron density, whereas
the shape is determined byσ(r ).
A detailed theoretical analysis of the influence of the variation

of this shape factor on the electronegativity, which is given in
the next section, was not yet established hitherto.

2. Contribution of the Shape Factor Variation to
Electronegativity

We start from the two functional relationships

(ref 1) and

That the latter relationship is meaningful is seen via equation
4: σ andN determineF and thereforeN, via the Hohenberg
Kohn theorem,6 E.
A change in energy from one ground state to another can

thus be written in the following two ways:

or

Now σ is a functional ofN andV,

SinceN andV determineF andN is known,σ is also known.
Expressing the variation ofσ in eq 8 via eq 9 and equating the
coefficients of the independent variables in eqs 7 and 8, one
obtains

Using eq 4, the derivative (∂σ(r )/∂N)ν can be written as

where we introduced the Fukui functionf(r ).1

The term between brackets then represents the deviation of
the Fukui function from the average electron density per
electron, a combination intergrating to zero upon multiplication
by the hardness kernel as pointed out by Ghosh.8 Combining
eqs 10 and 11, we obtain
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µ ) (∂E∂N)ν(r ) (1)

µ ≈ (∆E∆N)ν(r ) (2)

ø ) I + A
2

(3)

F(r ) ) Nσ(r ) (4)

E) E[N,ν] (5)

E) E[N,σ] (6)

dE) (∂E∂N)
ν
dN+∫( δE

δν(r ))Nδσ(r ) dr (7)

dE) (∂E∂N)
σ
dN+∫( δE

δσ(r ))Nδσ(r ) dr (8)

σ ) σ[N,ν] (9)

(∂E∂N)
ν

) (∂E∂N)
σ

+∫( δE
δσ(r ))N(∂σ(r )∂N )

ν
dr (10)

(∂σ(r )∂N )
ν

) ∂

∂N(F(r )
N )

ν
) 1
N(∂F(r )∂N )

ν
- 1

N2
F(r ) )

1
N(f(r ) -

F(r )
N ) (11)
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or in terms of the electronegativity

The electronegativity thus consists of two terms: an energy
variation at constant shape factor and a contribution due to the
variation of the shape factor at constant number of electrons
modulated by a fluctuation term, involving the deviation of the
Fukui function from the average electron density per electron.
It is interesting to note that very recently Baekelandt, Cedillo,
and Parr obtained a similar expression for the second derivative
of E with respect toN, the hardness.9 In the next paragraph,
the new response function, (∂E/δσ(r ))N to be placed on equal
footing with the well-known first-order response functions (∂E/
∂N)ν () -øν) and (δE/δν(r ))N ()F(r )),10will be studied in more
detail.

3. Interpretation of the new Response Function
(δE/δσ(r))N

An exact expression of the new response function can be
derived from perturbation theory. The change in external
potential due to a change in number of electrons and shape factor
is expressed via the first-order expression as9

For a stateΨk, the first-order contribution to the energy due to
this perturbation is1

Insertion of eq 14 in eq 15 yields

Identification with eq 8 yields

which, unfortunately, does not provide any additional physical
insight into the new response function.
The question now arises as to how a change in shape factor

can be accomplished at a constant number of electronsN.
Within an orbital formalism (closed shell case), the shape factor
σ(r ) can be written as

One possible way to model the change in shape factor, leaving
the number of electrons constant, is substitution of one particular
orbitalψi in this expression by a different one,ψj. The shape
factor then becomes

The contribution to the electronegativity due to the change in
shape factor, governed by the new response function (δE/
δσ(r ))N, can now be evaluated in a finite difference approxima-
tion

Using a Koopmans type approximation, the finite difference
expression of the response function then becomes

It can immediately be seen that in this approximation, the
response function will be zero when the orbitalsi and j have
the same energy (i.e., when they belong to a degenerate set of
orbitals).
Finally, consider the special case whereψi andψj are the

highest occupied molecular orbital (HOMO) and lowest unoc-
cupied molecular orbital (LUMO) of the atomic or molecular
system. The response function becomes

with η the hardness.11 Due to the proportionality of the hardness
and the inverse of the polarizabilityR,12 eq 22 can be rewritten
as

As could be intuitivily expected, the polarizability shows up
in the expression for the new response function. The results
indicates that the more polarizable a system, the smaller the
energy change associated with a change in shape factor, in
agreement with chemical intuition. A polarizable system will
thus show the tendency to change its shape factor more easily
under the application of an external perturbation than a less
polarizable system. The HOMO-LUMO density difference
transforms the polarizability (a global property) in a local
property. It has to be remarked finally that eq 23 only provides
a very crude approximation to the real response function in this
case, only serving to provide physical insight in the problem.
A change in shape factor at constant number of electrons can
only be calculated exactly by infinitesimally changing each
Kohn-Sham orbital, thereby preserving orthonormality of each
orbital couple.

4. Conclusion

The contribution of the shape factor to the electronegativity
was established. This gave rise to a new response function
representing the change of the system’s energy with respect to
this shape factor, which shows an inverse proportionality with
the polarizability.

(∂E∂N)
ν

) (∂E∂N)
σ

+ 1
N∫( δE

δσ(r ))N(f(r ) -
F(r )
N )dr (12)

øν ) øσ - 1
N∫( δE

δσ(r ))N(f(r ) -
F(r )
N )dr (13)

∆ν(r ) ) (∂ν(r )∂N )
σ
∆N+∫[ δν(r )

δσ(r ′)]N∆σ(r ′) dr ′ (14)

Ek
(1) )∫Ψ*k∆ν(r )Ψk dx

N )∫Fk(r )∆ν(r ) dr (15)

Ek
(1) )∫(∂ν(r )∂N )

σ
Fk(r ) dr ∆N+
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δσ(r ′)]NFk(r )∆σ(r ′) dr dr ′ (6)
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δσ(r )]N dr ′ (17)
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|ψi(r )|2 (18)
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|ψN|2 + |ψj|2] (19)

( δE
δσ(r ))N≈ ( ∆E

∆σ(r ))N (20)

( ∆E
∆σ(r ))N≈

εj - εi

|ψj(r )|2 - ψi(r )|2
N (21)

( ∆E
∆σ(r ))N≈

εLUMO - εHOMO

|ψLUMO(r )|2 - |ψHOMO(r )|2
N≈

N
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|ψLUMO(r )|2 - |ψHOMO(r )|2
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( ∆E
∆σ(r ))N ∝ N
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1
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(23)
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